

PARAMETRES TECHNICO-ECONOMIQUES DE REFERENCE

Identification

Le présent document est basé sur le modèle Enedis-MOP-RES_002E, version 1 du 03/12/2024

Document(s) associé(s) et annexe(s)

• Enedis-NOI-TEC_105E : « Quelle est la valeur socio-économique de la continuité d'alimentation du Réseau Public de Distribution géré par Enedis ? »

Résumé/Avertissements

SICAE-OISE utilise la DTR d'ENEDIS, pour laquelle elle a obtenu les droits d'utilisation. Dans le cas où un document de la DTR ne serait pas disponible sur le site internet www.sicae-oise.fr, il convient d'utiliser le document de la DTR d'ENEDIS disponible sur le site <u>www.enedis.fr</u>.

SICAE-OISE utilise la méthode exposée dans la note Enedis-MOP-RES_002E concernant la détermination de la section technico-économique des sections de conducteurs. La présente note ne reprend pas l'exposé de la note Enedis-MOP-RES_002E, mais elle permettra au lecteur d'appréhender rapidement les dispositions particulières mise en œuvre par SICAE-OISE.

La note de référence est donnée en annexe.

1 Spécificités retenues à SICAE-OISE

SICAE-OISE a retenu les critères technico-économiques de la note Enedis-MOP-RES_002E, avec l'adaptation présentée ci-dessous :

Dans les abaques de la note Enedis, il est indiqué l'utilisation possible, pour le raccordement de sites de production, de câbles de section 400 mm² Al. SICAE-OISE n'est pas en mesure de retenir ce palier technique pour le raccordement de sites de production. En effet, le déploiement de sections supérieures à 240 mm² nécessite de lourds investissements :

- En moyens humains (formations et qualification des agents amenés à réaliser des accessoires) ;
- En maintien des compétences (recyclages et mises en pratique régulières) ;
- En matériel (outils de sertissage et matrices spécifiques, maintien en stock d'accessoires 400 mm².

Dans ces conditions, SICAE-OISE remplacera la section de 400 mm², en fonction des résultats de l'étude :

- Soit par le passage de 2 câbles 240 mm Aluminium ;
- Soit par le passage de câbles de section 240 mm² Cuivre.

IMPORTANT

Dans les pages qui suivent, l'abaque de la page 9/10 de la note Enedis-MOP-RES_002E a été révisé pour prendre en compte ces particularités.

Note externe

Direction Technique

Paramètres technico-économiques de référence

Identification:	Enedis-MOP-RES_002E
Version:	1
Nb. de pages :	10

Version	Date d'application		Annule et remplace
1	03/12/2024	Création	Enedis-PRO-RES_43E, Enedis-PRO-RES_05E, Enedis-PRO-RES_50E, Enedis-PRO-RES_06E, Enedis-NOI-RES_07E

Document(s) associé(s) et annexe(s) :

Enedis-NOI-TEC_105E : « Quelle est la valeur socio-économique de la continuité d'alimentation du Réseau Public de Distribution géré par Enedis ? »

Résumé / Avertissement

La présente note a pour objectif d'exposer les principaux paramètres technico-économiques utilisés dans les études de réseau (renforcements ou raccordements) :

- · taux d'actualisation,
- · coût des pertes à la pointe,
- sections économiques.

La note expose la méthode utilisée pour déterminer les valeurs de ces différents paramètres, ainsi que des éléments de compréhension sur leurs conditions d'utilisation.

Les valeurs applicables à date sont également fournies, qui pourront être mises à jour sur simple information des parties prenantes.

Enedis - Tour Enedis 34 place des Corolles 92079 Paris La Défense Cedex enedis.fr SA à directoire et à conseil de surveillance Capital de 270 037 000 euros R.C.S. de Nanterre 444 608 442 © Copyright Enedis Page : 1/10 03/12/2024

SOMMAIRE

1 — Ol	bjet de la notebjet de la note	3
2 — To	aux d'actualisation	3
2.1.	Présentation du paramètre et de son utilisation	
2.2.	Méthodologie de détermination de la valeur	
2.3.	. Valeur à date	
3 — Co	oût des pertes à la pointe	Z
3.1.	Présentation du paramètre et de son utilisation	Z
3.2.	. Méthodologie de détermination de la valeur	<u>E</u>
3.3.	. Valeur à date	
4 — Se	ections économiques	6
4.1.	Présentation du paramètre et de son utilisation	
4.2.	. Méthodologie de détermination de la valeur	
1.0	Valous à deta	

Enedis-MOP-RES_002E Version 1

Page: 2/10 03/12/2024

1 — Objet de la note

Enedis développe, maintient et exploite le réseau de distribution d'électricité dont elle a la responsabilité en visant le meilleur ratio coût/bénéfices pour la collectivité. Pour identifier les besoins de renforcements de réseau ou optimiser les raccordements des différents types d'utilisateurs, Enedis utilise depuis plusieurs décennies un processus décisionnel basé sur des Analyses Coût-Bénéfice (ACB) permettant de définir une trajectoire d'investissement optimale dans la durée pour la collectivité. Ce processus fait intervenir plusieurs paramètres technico-économiques, qui doivent régulièrement être mis à jour afin de rester cohérents avec l'évolution des techniques, des usages, des comportements et des attentes des clients. Cependant, ces paramètres étant utilisés pour le dimensionnement du réseau, ils reflètent des enjeux de long terme, et ne doivent donc pas être sensibles aux effets conjoncturels ni varier trop fréquemment, afin de garantir la stabilité des résultats d'étude. La présente note a pour objectif d'exposer les principaux paramètres technico-économiques utilisés dans les études de réseau (renforcements ou raccordements):

- taux d'actualisation,
- coût des pertes à la pointe,
- sections économiques.

La note expose la méthode utilisée pour déterminer les valeurs de ces différents paramètres, ainsi que des éléments de compréhension sur leurs conditions d'utilisation.

Les valeurs applicables à date sont également fournies, qui pourront être mises à jour sur simple information des parties prenantes.

A noter que certains de ces paramètres sont interdépendants, comme détaillé plus bas. Ainsi, les sections économiques dépendent du taux d'actualisation et du coût des pertes à la pointe.

2 — Taux d'actualisation

2.1. Présentation du paramètre et de son utilisation

Le taux d'actualisation est un élément déterminant des ACB des projets d'investissements publics ou privés lorsqu'ils présentent des impacts très éloignés dans le temps. En effet, il permet de ramener à une date unique des flux financiers (dépenses liées à l'investissement et gains/pertes du projet monétarisés) qui s'échelonnent dans le temps et donc de décrire un arbitrage entre dépenses présentes et futures. Ce taux peut présenter de fortes différences selon les pays mais est unique pour un pays considéré, quel que soit le projet d'investissement étudié.

Le taux d'actualisation reflète ainsi le coût d'opportunité du capital pour la collectivité (habitants, pouvoirs publics, industriels, distributeurs d'énergie, etc.).

Le taux d'actualisation intervient :

- dans la réalisation des bilans actualisés nécessaires aux éclairages des décisions d'investissement,
- dans la définition des sections économiques des conducteurs.

2.2. Méthodologie de détermination de la valeur

France Stratégie (héritière du Commissariat Général au Plan) réalise des études ayant pour objectif de définir :

- $-\,$ un taux utilisable par les opérateurs des grandes infrastructures publiques,
- un taux dont la stabilité est assurée dans le temps (pas de forte variation d'une année à l'autre).

Enedis suit les recommandations de France Stratégie pour déterminer le taux d'actualisation.

2.3. Valeur à date

La dernière mise à jour de la valeur du taux d'actualisation s'applique à compter du 03/12/2024. La valeur à date du taux d'actualisation est de 3,2 %.

Enedis-MOP-RES_002E

Page: 3/10 03/12/2024

3 — Coût des pertes à la pointe

3.1. Présentation du paramètre et de son utilisation

Le sujet de la réduction des pertes électriques a toujours été au cœur des préoccupations du distributeur : enjeu de coûts d'achats (depuis le 1er juillet 2004, Enedis achète sur le marché de l'électricité de l'énergie pour compenser les pertes électriques du Réseau Public de Distribution), enjeu de sobriété énergétique et enjeu d'empreinte carbone (car diminuer les pertes permet de ne pas avoir à les produire en amont). Les pertes électriques se décomposent en pertes fer (pertes constantes en première approximation, dans le noyau magnétique des transformateurs) et pertes Joule (échauffement des câbles selon une loi quadratique, c'est à dire dépendante du carré de l'intensité transitée).

Lors des études de développement du réseau, Enedis recherche les solutions qui présentent le coût global pour la collectivité le plus faible, ce coût global incluant notamment le coût des investissements et le coût des pertes électriques. Un calcul complet des pertes électriques est inaccessible techniquement car il nécessiterait d'évaluer l'état de charge du réseau à chaque instant.

Afin de s'affranchir de cette complexité, le calcul est ramené à un unique état de charge, mais en intégrant la représentativité de cet état par rapport au profil de charge complet annuel : ainsi cette simplification du calcul ne conduit ni à surestimer les pertes (en cas de sélection d'un état de forte charge), ni à sous-estimer les pertes (en cas de sélection d'un état de faible charge).

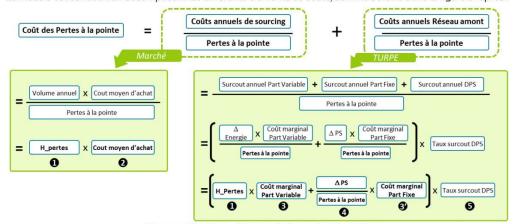
Avec les outils actuels, les études de développement du réseau se font en simulant l'état du réseau dans des situations de pointe de consommation ou de pointe de production, et c'est donc l'état de charge qui est retenu pour la simplification méthodologique exposée ci-dessus.

Ces simulations permettent d'évaluer la valeur en puissance des pertes électriques dans ces situations de pointe, mais ne permettent pas directement d'évaluer la quantité de pertes annuelles en énergie. La problématique est donc d'arriver, à partir de cette valeur en puissance, à estimer un coût en € des pertes annuelles, qui pourra être utilisé dans la comparaison du bilan économique de différentes solutions d'investissement.

Pour valoriser les pertes électriques, un modèle de coût du kW de pertes à la pointe, en €/kW/an, est utilisé. Ce modèle joue le double rôle d'extrapoler un point unique en puissance à la pointe en un volume annuel, et de valoriser ce volume en €. Pour traduire l'effet du profil de charge annuel et être représentatif du volume d'énergie perdue correspondant, ce coût est fonction de la durée d'utilisation de la pointe (H*max, égal à l'énergie annuelle divisée par la puissance à la pointe). Cette valorisation des pertes inclut :

- l'achat sur le marché de l'énergie perdue sur le réseau de distribution (sur la base d'une prévision de coûts de marché à long terme),
- l'impact de l'acheminement de cette énergie sur le réseau amont (sur la base du TURPE).

Le modèle distingue le coût des pertes en BT (postes HTA/BT et réseau BT) de celles en HTA (Postes Sources et départs HTA). Le coût des pertes BT est plus élevé que celui des pertes en HTA, rendant ainsi compte du fait que les déperditions en BT impactent aussi le dimensionnement du réseau HTA qui les achemine. Ce modèle est unique à la maille nationale, il représente une synthèse statistique de l'ensemble des réseaux.


Enedis-MOP-RES_002E Version 1 Page : 4/10 03/12/2024

3.2. Méthodologie de détermination de la valeur

Le modèle est construit en décomposant les différents éléments de coûts, comme détaillé dans la figure ci-après :

Décomposition du modèle de coût des pertes à la pointe

Pour chacun des éléments numérotés de la dernière ligne, un modèle simple, fonction de H*max, est déterminé à partir d'une analyse statistique de courbes de charge. Plusieurs de ces éléments font appel à des hypothèses externes :

- le modèle de coût moyen d'achat (2) nécessite d'évaluer la corrélation entre des chroniques de pertes et des chroniques de coût de marché à long terme. Enedis utilise les données du corps d'hypothèses stratégique de RTE pour évaluer les coûts de marché à long terme de l'électricité. Ce coût de marché est égal au coût marginal de production du système électrique à chaque instant. Les valeurs moyennes annuelles de ces coûts de marché dans les scénarios de RTE sont données dans le tableau ci-après;
- le modèle de coût marginal de la part variable (3) nécessite d'évaluer la corrélation entre les chroniques de pertes et les postes horosaisonniers du TURPE. Le TURPE HTB1 - moyenne utilisation est utilisé;
- le modèle du coût marginal de la part fixe (3') se réfère aussi au TURPE. La valeur du poste horosaisonnier « Pointe » du TURPE HTB1 - moyenne utilisation est utilisée.

	2030	2040
Coût moyen annuel de marché de l'électricité dans le corps d'hypothèses stratégique de RTE (€/MWh)	91	82

3.3. Valeur à date

La dernière mise à jour de la valeur du coût des pertes à la pointe s'applique à compter du 03/12/2024. Le coût des pertes à la pointe est évalué à partir d'une valeur de coût de marché de l'électricité à un horizon supérieur à 10 ans, qui représente un horizon de temps cohérent avec les enjeux étudiés, soit 82 €/MWh. Les valeurs de coût des pertes à la pointe en fonction de H*max sont données par le tableau ci-après.

Enedis-MOP-RES_002E Version 1 Page: 5/10 03/12/2024

	BILAN HTA	BILAN BT Coût total (k€/MW/an)		
H*max (en h)	Coût total (k€/MW/an)			
0	0	0		
500	16	16		
1000	32	32		
1500	51	53		
2 000	74	78		
2 500	102	108		
3 000	135	143		
3 500	174	184		
4 000	219	231		
4 500	269	284		
5 000	323	341		
5 500	378	399		
6 000	433	458		
6 500	491	520		
7 000	552	585		
7 500	616	653		
8 000	682	723		
8 500	752	797		
8 760	806	855		

4 — Sections économiques

4.1. Présentation du paramètre et de son utilisation

Enedis, dispose d'une gamme finie de conducteurs (lignes aériennes et câbles souterrains) qui ont été qualifiés et pour lesquels elle a passé des marchés avec des fournisseurs. Les différents types de conducteurs sont principalement caractérisés par leur matériau constitutif, et la section de la partie conductrice. Ces paramètres vont avoir un impact sur le courant maximal admissible, et sur la résistivité du conducteur. A matériau identique, plus la section est élevée, plus son courant maximal admissible est grand, et sa résistivité faible. Les pertes par effet Joule, qui se matérialisent par un échauffement du conducteur en sont ainsi diminuées.

Lorsqu'elle met en place un conducteur, Enedis sélectionne le type d'ouvrage qui permet de faire transiter le courant prévu, mais cherche aussi à minimiser les coûts sur toute sa durée de vie. Les coûts à considérer sont donc principalement le coût initial de l'ouvrage, et le coût des pertes Joule qui interviendront pendant toute la durée d'utilisation de l'ouvrage - de l'ordre de plusieurs dizaines d'années.

Si le coût initial d'un conducteur augmente avec sa section, les pertes Joule qu'il induira pour acheminer une même quantité de courant diminuent. Il existe donc un équilibre entre le coût économisé initialement en installant une section plus faible et le coût supplémentaire qui sera encouru pendant toutes les années ultérieures du fait de l'échauffement accru des câbles.

Cet équilibre dépend du coût de l'énergie à long terme, puisqu'il permet d'évaluer le coût des pertes générées sur la durée de vie du câble. Le taux d'actualisation, qui permet de comparer au sein d'un même calcul le coût que représente l'investissement initial et les coûts des pertes qui auront lieu chaque année, y compris à des horizons lointains, est un autre paramètre essentiel pour évaluer cet équilibre.

La section optimale, qui conduit au moindre coût sur la durée de vie, résulte donc d'un compromis entre ces deux effets, et est toujours supérieure à la section minimale qui aurait permis de faire transiter le courant prévu.

Dans ses règles de dimensionnement, Enedis prend en compte cet enjeu via des abaques de « sections économiques ». Ces abaques permettent d'identifier la section optimale à installer, en fonction de la puissance de pointe qui est prévue et de la durée d'utilisation de la pointe (H*max, égal à l'énergie annuelle divisée par la puissance à la pointe). Elles sont différentes en fonction du niveau de tension, et entre raccordement de producteurs et de consommateurs.

Enedis-MOP-RES_002E

Page: 6/10 03/12/2024

4.2. Méthodologie de détermination de la valeur

Le principe de la construction des abaques de sections économiques est d'identifier à quel niveau de puissance le choix d'une section supérieure devient justifié économiquement, c'est-à-dire que le gain sur les pertes (sur la durée de vie de l'ouvrage) devient supérieur au surcoût du câble.

En pratique, les pertes sont estimées à partir du courant devant transiter dans le câble à la pointe, et du coût des pertes à la pointe (défini au chapitre 3 —). Ce dernier est une fonction de H*max, la durée d'utilisation de la pointe, qui caractérise le rapport entre l'énergie et la puissance devant transiter dans le câble.

Le passage à une section supérieure se fait donc lorsque le courant devant transiter dans le câble à la pointe dépasse un seuil défini comme :

$$I_{seuil} = \sqrt{\frac{Surcout \, C\hat{a}ble}{3 \times Gain \, Resistance \times K_{cpp}}}$$

où K_{app} est la somme actualisée du coût des pertes à la pointe sur la durée de vie :

$$K_{CPP} = \sum_{i=0}^{N} \frac{CPP_{i}(H_{max}^{*})}{(1+TA)^{i}}$$

Avec:

- Surcoût Câble : différence (en €/m) de coût entre une section et la section supérieure ;
- Gain Résistance : différence (en ohm/m) de résistivité entre une section et la section supérieure ;
- TA: Taux d'Actualisation;
- CPPi : Cout des Pertes à la Pointe à l'année i (fonction de l'évolution des charges, du prix de l'énergie...) ;
- N : la durée de vie (en pratique égale à 40 ans).

Les sections économiques sont donc définies par des abaques, en fonction de la puissance apparente à la pointe et du H*max. Le choix de la puissance apparente en variable d'entrée (plutôt que du courant) nécessite d'avoir des abaques différents par niveau de tension. Par ailleurs, on définit des abaques différents pour le raccordement de consommateurs ou de producteurs, car on fait l'hypothèse d'une croissance de la charge dans le cas d'un consommateur (due à l'électrification progressive de ses usages), mais pas dans le cas d'un producteur. Enfin, les abaques prennent aussi en compte les intensités maximales admissibles pour chaque section (Imap).

Les paramètres influant sur la définition des sections économiques sont donc :

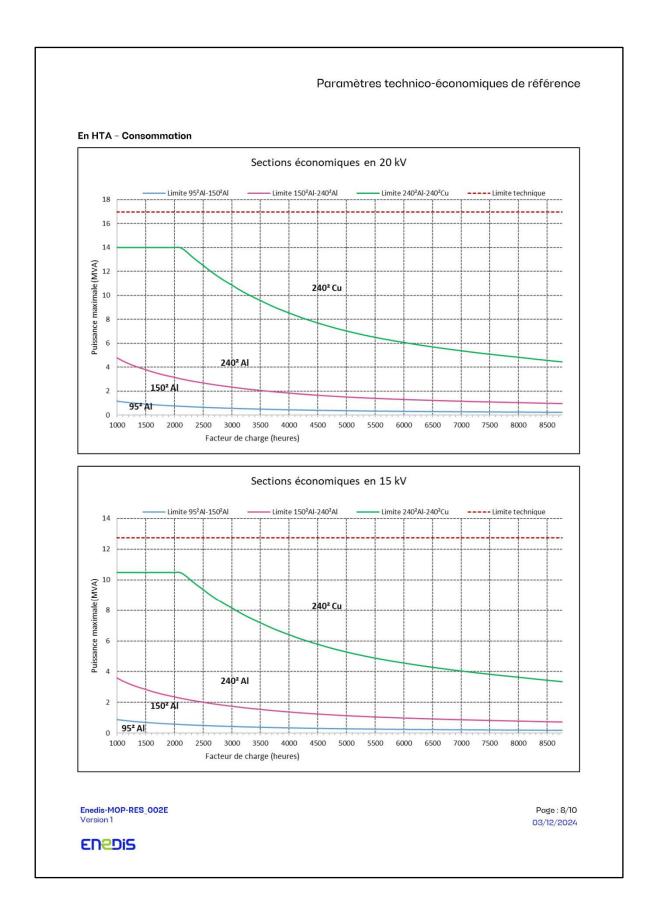
- le coût des câbles (en fait, seuls les écarts de coût entre sections sont importants) ;
- les caractéristiques techniques des câbles : Imap et résistivité ;
- la durée de vie retenue pour le calcul ;
- le coût des pertes à la pointe ;
- le taux d'actualisation ;
- le taux de croissance des charges.

Cas particulier de la BT

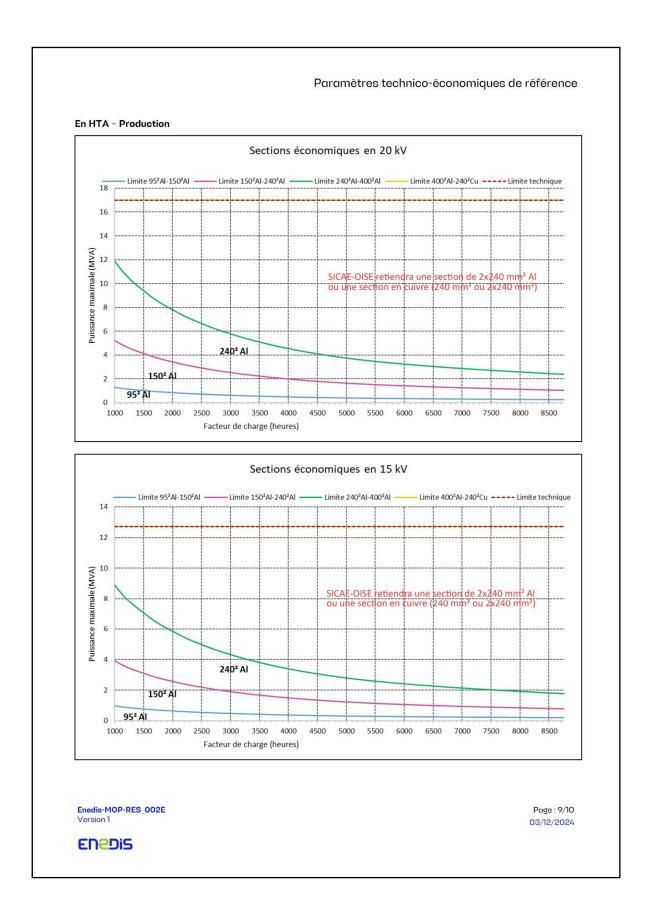
En BT, les abaques prennent une forme différente, simplifiée, principalement pour deux raisons :

- en l'absence de mesure systématique au niveau des postes HTA/BT ou des départs BT, il n'est pas possible de déterminer un H*max propre à chacune de ces mailles;
- une cohérence est nécessaire avec le dimensionnement des branchements et des réseaux internes de collectifs, qui repose sur le norme C14-100.

4.3. Valeur à date


La dernière mise à jour des abaques de sections économiques s'applique à compter du 03/12/2024.

Enedis-MOP-RES_002E


Page: 7/10 03/12/2024

En BT

Raccordement individuel inférieur ou égal à 36 kVA ou raccordement d'un immeuble ou d'un lotissement (en dehors de la desserte intérieure du lotissement) :

	Technique Aérienne		Technique Souterraine		
Section économique	70 mm ² Alu	150 mm² Alu	95 mm² Alu	150 mm² Alu	240 mm² Alu
Puissance de Raccordement	< 60 kVA	≥ 60 et < 120 kVA	< 60 kVA	< 120 kVA	≥ 120 kVA

Raccordement individuel supérieur à 36 kVA:

	Technic	que Aérienne	Technique Souterraine		
Section économique	70 mm² Alu	150 mm² Alu	95 mm² Alu	150 mm² Alu	240 mm ² Alu
Puissance de Raccordement	< 60 kVA	≥ 60 et < 120 kVA	< 60 kVA	< 90 kVA	≥ 90 kVA

Renforcement du réseau :

	Technique Aérienne		Technique Souterraine		
Section économique	70 mm ² Alu	150 mm ² Alu	95 mm² Alu	150 mm² Alu	240 mm ² Alu
Puissance maxi transitée dans le réseau	< 50 kW	≥ 50 kW	< 40 kW	< 70 kW	≥ 70 kW

Raccordement dans la desserte intérieure d'un lotissement :

	Technique Souterraine				
Section	95 mm² Alu 150 mm² Alu 240 mm²				
Puissance transitée	< 60 kVA	< 120 kVA	≥ 120 et ≤ 180 kVA		

Enedis-MOP-RES_002E Version 1

Page : 10/10 03/12/2024

